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Abstract

In this MTH 501 - Mathematical Literature project, we present the results of
the article “On the Largest Eigenvalue of the Distance Matrix of a Connected
Graph” by Bo Zhou and Nenad Trinajstic [Chemical Physics Letters 447 (2007)
p.384-387]. The main results provide bounds on the largest eigenvalue of the dis-
tance matrix of a connected graph. These bounds are of interest as a molecular
descriptor of chemical compounds.



1 Introduction
1.1 Overview
In this MTH 501 - Mathematical Literature project, we present the results by
Zhou and Trinajstic found in the article “On the Largest Eigenvalue of the Dis-
tance Matrix of a Connected Graph” [6]. The eigenvalues of distance matrices,
as well as other graph invariants, are of use in structure-property-activity mod-
eling such as QSAR and QSPR models [3]. These models incorporate knowledge
and methods from chemistry, physics, biology, mathematics, and statistics to
predict the activity (e.g. anti-malarial, anti-cancer, etc), properties (e.g. water
solubility, melting point, etc.), or toxicological data (e.g. organ toxicity, geno-
toxicity, etc.) of new chemicals [4]. The main results in the Zhou and Trinajstic
paper provide bounds on the largest eigenvalue of the distance matrix of a con-
nected graph.

To achieve those results, first we need to explore properties of connected
graphs and their distance matrices. This will lead to the main bounds on the
eigenvalues of distances matrices. Using these bounds, we can prove a Nordhaus-
Gaddum type result for the upper and lower bounds of the largest eigenvalue
of a connected graph and its complement.

1.2 Ethane and C20

I have chosen to illustrate the properties and results throughout this paper with
two molecules–ethane (C2H6) and the fullerene C20, depicted below.

Figure 1: Ethane and C20 molecules

As these two examples illustrate, molecules can be modeled using graphs,
where vertices represent atoms and the edges represent bonds between those
atoms. In Figure 2, we see the graphs of ethane (Graph E) and the C20 fullerene
(Graph C). The solid black vertices represent carbon atoms and the open
vertices in Graph E represent hydrogen atoms.
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Figure 2: Graph E and Graph C

2 Definitions
In this section, we will collect a few definitions needed for our study of these
topics. We begin by defining the distance matrix.

Definition 2.1. Let G be a connected graph with n vertices. The distance
matrix D is the n× n matrix whose ij-entry is

Dij = dist(i, j)

for all 1 ≤ i, j ≤ n, where dist(i, j) denotes the path-length distance function
for G.

Let DE and DC be the distance matrices of the the graphs E and C. The
entry [DE]ij encodes the distance between vertices i and j. For example, [DE]14
means that dist(1, 4) = 2. The distance matrix DE also encodes the edge set of
E because any [DE]ij = 1 implies i ∼ j. Therefore the graph of E is uniquely
determined up to isomorphism by the matrix DE. (The matrix DC has been
included in the appendix.)

DE =



0 1 1 2 2 2 1 1
1 0 2 1 1 1 2 2
1 2 0 3 3 3 2 2
2 1 3 0 2 2 3 3
2 1 3 2 0 2 3 3
2 1 3 2 2 0 3 3
1 2 2 3 3 3 0 2
1 2 2 3 3 3 2 0


Figure 3: The distance matrix of E.

As this example demonstrates, distance matrices of graphs are real, non-
negative, and symmetric. Since they are symmetric, the sum of the entries
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above the diagonal and below the diagonal are equal. This sum is called the
Wiener index of a chemical graph G, as defined below.

Definition 2.2. Let G be a connected graph with n vertices. Define

W (G) =
∑

1≤i<j≤n

Dij .

In other words, W (G) is the sum of the distances between all unordered pairs
of vertices. We refer to W (G) as the Wiener index of G.

The Wiener index is a topological index of a molecule that is used in chemical
graph theory. For our examples, we find that

W (E) = 58 and W (C) = 500.

Another metric of interest in chemical graph theory is the sum of the squares
of the distances of all unordered pairs, denoted S(G) and defined below.

Definition 2.3. Let G be a connected graph with n vertices. We define S(G)
to be the sum:

S(G) =
∑

u,v∈V (G)

dist(u, v)2.

Definition 2.4. For any symmetric n × n matrix with (real) eigenvalues λi

(1 ≤ i ≤ n), we use Λ to denote the maximum eigenvalue, so that

Λ ≥ λi (1 ≤ i ≤ n).

Definition 2.5. Let G be the class of connected graphs for which the distance
matrix has exactly one positive eigenvalue.

Familar graphs that are members of G include the dodecahedral and icosa-
hedral graphs, the Petersen graph, the Gosset graph, the Schlafli graph, and
the three Chang graphs (see [1] for definitions). There are also many infinite
families of graphs that belong to G. These include the cycle graphs, the John-
son graphs, the Hamming Graphs, the Cocktail Party graphs, the Doob graphs,
the Doubled Odd Graphs, and the Halved Cubes. These graphs (and more)
have been extensively studied in [1]. Since the C20 molecule is viewed as a
dodecahedral graph, which has distance spectra

{50, 0(9), (−7 + 3
√
5)(3),−2(4), (−7− 3

√
5)(3)},

it follows that C ∈ G.
Interestingly, there are many additional examples of graphs in this class G

found in chemistry. The graphs that correspond to methane, ethane, acetic acid,
and alcohol all belong to G. This is because the graphs of these molecules are
trees. In Zhou’s work on the largest eigenvalue of trees [5], it was shown that
the spectrum of a tree has exactly one positive eigenvalue, and so it follows that
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E ∈ G. Additionally, some compounds that are realized as cyclic graphs, such
as octasulfur S8, also belong to G.

Some graphs of chemical molecules that do not belong to G are the “bucky
ball” (buckminsterfullerene C60) and the fullerene C70.

3 Connected Graphs
Let us begin with a few lemmas about connected graphs that will be used later
in the results about their distance matrices.

Lemma 3.1. If G is a connected graph and diam(G) ≥ 3, then diam(G) ≤ 3.

Proof. Let diam(G) ≥ 3. So there exist vertices u, v with distG(u, v) = 3, and
in G, we have u ∼ v.

Consider any vertices z, w. In G, either z ∼ u or z ∼ v, because if z � u
and z � v then distG(u, v) ≤ 2, which is a contradiction. Similarly, w ∼ u or
w ∼ v in G.

Because u ∼ v in G, this means distG(z, w) ≤ 3. Since z, w were chosen
arbitrarily, this implies G has diameter at most 3.

Lemma 3.2. Let G be a connected graph with n vertices and m edges. Then

W (G) ≥ n(n− 1)−m,

with equality if and only if G = Kn or G has diameter two.

Proof. Since G is connected, we have

W (G) =
∑
i<j

Dij ≥ m.

Suppose G = Kn, then m =
(
n
2

)
= n(n−1)

2 . Therefore W (G) = m. So,

W (G) = m = n(n− 1)− n(n− 1)

2
= n(n− 1)−m,

as desired.
Now suppose G 6= Kn, then W (G) > m. Let i = n(n−1)

2 − m, so that i
counts the number of pairs of vertices that are not adjacent in G. The distance
between any pair of non-adjacent vertices is at least two. Therefore, if G 6= Kn,
then

W (G) ≥ m+ 2i = m+ 2
[n(n− 1)

2
−m

]
= n(n− 1)−m

with equality if the diameter of G is at most two.
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Since E has diameter greater than two, equality does not hold in the above
lemma. Indeed,

W (E) = 58 > 49 = 8(7)− 7.

Since the dodecahedron graph C is distance regular, the row sums of the distance
matrix for C are constant ([DC]i = 50 where [DC]i is the i-th row sum of the
distance matrix). So

W (C) =
[20DC]i

2
= 500 > 350 = 20(19)− 30.

Lemma 3.3 ([6], Eqn (3)). Let G be a connected graph with n vertices. Then

n(n− 1)

2
≤ S(G) ≤ (n+ 1)n2(n− 1)

12

and S(G) is minimum for Kn and maximum for Pn, in which cases equality is
attained.

Proof. Since G is a connected graph, dist(u, v) ≥ 1 for all u, v ∈ V (G).
Suppose G = Kn, so that dist(u, v) = 1 for all u, v ∈ V (G). Then S(G) =(

n
2

)
= n(n−1)

2 , which counts the number of unordered pairs of vertices.
Suppose G = Pn, so that dist(u, v) = n − 1 for some u, v ∈ V (G). Then

there

S(G) =

n−1∑
i=1

i(n− i)2 =

n−1∑
i=1

i2(n− i) =

n−1∑
i=1

ni2 −
n−1∑
i=1

i3.

Evaluating the sums gives us

S(G) = n

[
(n− 1)n(2n− 1)

6

]
− n2(n− 1)2

4
=

(n− 1)n2(n+ 1)

12
.

If G 6= Kn and G 6= Pn, then dist(u, v) < n − 1 for all u, v in V (G) and
dist(u, v) > 1 for some u, v in V (G). Therefore S(G) <

∑n−1
i=1 i(n − i)2 and

S(G) >
(
n
2

)
. And thus,

n(n− 1)

2
< S(G) <

(n+ 1)n2(n− 1)

12
,

as desired. �

Applying this result to our graphs E on 8 vertices and C on 20 vertices, we
find that

28 ≤ S(E) ≤ 336 and 190 ≤ S(C) ≤ 13300.

Since the graphs for ethane and C20 are neither complete graphs nor paths,
they are not examples of the minimum or maximum S(G). By calculation,
S(E) = 136 and S(C) = 1540.
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4 Distance Matrices of Connected Graphs
Distance matrices of connected graphs are real, symmetric, non-negative, and
irreducible. Row sums of these matrices contribute to the upperbounds on the
eigenvalues. This first lemma implies that the spectral radius is at most the
largest row sum.

Lemma 4.1. Let λ be an eigenvalue of a non-negative matrix A. Then λ is
bounded above by the maximum row sum of A. Furthermore, if the row sums of
A are equal, then the maximum eigenvalue is the maximum row sum.

Proof. Let ~x be an eigenvector in the λ-eigenspace for any eigenvalue λ of A.
Then, |A~x| = |λ~x|. Let xi be a component of ~x such that |xi| ≥ |xj | for all j.
Then

|λ||xi| =

∣∣∣∣∣∣
n∑

j=1

aijxj

∣∣∣∣∣∣ ≤
n∑

j=1

|aij ||xj | =
n∑

j=1

aij |xj | ≤ |xi|
n∑

j=1

aij .

Note that |xi| > 0 since there must be a non-zero entry of ~x. So

|λ| ≤
n∑

j=1

aij ≤ max
1≤i≤n

n∑
j=1

aij .

Therefore the spectral radius of a non-negative matrix is bounded above by
the maximum row sum. Furthermore, if the row sums are equal, then Λ equals
the maximum row sum.

In relation to ethane and C20 (graphs E and C), the above result says that
the eigenvalues have an upper bound of 16 and 50 respectively. As noted earlier,
the dodecahedron is distance-regular, so the rows sums of the distance matrix
for C20 are constant. Therefore the largest eigenvalue for that matrix is 50.

In the results that follow, we will refine the bounds by constraining the
maximum row sum, basing our constraints upon the number of vertices and
diameter.

Definition 4.1. Let G be a connected graph on n ≥ 4 vertices. We say G is a
Broom graph, if diam(G) = 3 and there exists a vertex v such that∣∣{u | dist(u, v) = 3}

∣∣ = n− 3.

Note that such a graph G contains a star (K1,n−1) as a subgraph. We denote
the class of all broom graphs by B.

See Figure 3 for an illustration. Notice that the definition allows for there
to exist edges between vertices that are at distance three from the vertex v.
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Figure 3: A broom graph

The next result gives a sufficient condition for a graph to be a broom.

Lemma 4.2. Suppose G is connected with n ≥ 5 vertices and diameter 3. If
any row of the distance matrix D has a sum equal to 1+ 2+ 3(n− 3), then that
row sum is maximal in D and G ∈ B. Moreover, G is connected with diameter
3 and a maximum row sum of 1 + 2(n− 3) + 3.

Proof. Let x be a vertex that corresponds to a row with the specified sum in
the distance matrix. Then there exists exactly one vertex at distance 1 (call it
y), exactly one vertex at distance 2 (call it z), and the remaining n− 3 vertices
are at distance 3. The graph G\x contains a star (K1,n−1) subgraph and thus
G ∈ B.

Claim: The diameter of G is 3.
In G, we have deg(x) = n−2 (adjacent to all but y), deg(y) = n−3 (adjacent

to all but x and z), and deg(z) = 1 (adjacent to x). The remaining vertices have
degree at least 2 and are adjacent to x and y.

Consider the vertices partitioned by their distance in G from z.
Let Di = {u | i = dist(z, u)}. Then D1 = {x}, D2 = V (G)\{x, y, z}, and

D3 = {y}. It follows that G has diameter 3 and z has the maximum row sum.
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Lemma 4.3. Let DM be the maximum row sum of the distance matrix D. Let
G be a connected graph with n vertices and diameter d. Then

DM ≤
d−1∑
i=1

i+ (n− d)(d) ≤ n(n− 1)

2

and equality holds if and only if G is a path of length n− 1.
Proof. Since G is a connected graph, diam(G) ≤ n − 1. Pick u, v such that
dist(u, v) = d. Then there are a maximum of n− d vertices at distance d from
u. Let DM be the maximum row sum of D. Then

DM ≤
d−1∑
i=1

i+ (n− d)(d) ≤ n(n− 1)

2

with equality if and only if d = n− 1.
Let G be a path of length n−1. Then d = n−1, so DM = n(n−1)

2 . Conversely,
suppose DM = n(n−1)

2 . Then d = n− 1 and G is a path of length n− 1.

Looking at the distance matrices for E and C, you can see the diameter in
each of the matrices. Since the diameter is the maximum distance over all pairs
of vertices, the diameter of E is three. By Lemma 4.3, the maximum row sum
must satisfy

DM ≤
2∑

i=1

i+ (8− 3)(3) = 18.

As exhibited in the distance matrix below, the maximum row sum is 16.

Corollary 4.3.1. Let G be a path with n vertices. Then the row sums of the
distance matrix are not equal.

Proof. Let Dw be the row sum of D corresponding to a vertex, w, where
deg(w) = 2. Then

Dw ≤ 1 +

n−2∑
i=1

i = 1 +
(n− 2)(n− 1)

2
<

n(n− 1)

2
= DM .
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5 Eigenvalues of Distance Matrices
The eigenvalues of distance matrices have many properties that are not seen in
the eigenvalues of other real and symmetric matrices. Since the diagonal of a
distance matrix is all zeros, the sum of the eigenvalues is zero.

Lemma 5.1. [6, Eqn (1)], Let G be a connected graph with n ≥ 2 vertices and
let λi (1 ≤ i ≤ n) be the eigenvalues of the distance matrix D of G. Then

n∑
i=1

λi = 0.

Proof. Since D is real and symmetric, D is diagonalizable by the spectral the-
orem. So D = PDP−1 where D is the diagonal matrix of eigenvalues of D.
Now

Tr(D) = Tr(PDP−1) = Tr(DP−1P) = Tr(D).

But Tr(D) = 0 because Dii = 0 for all i. It follows that Tr(D) = 0.

Additionally, since the distance matrices are symmetric, the sum of the
squares of the eigenvalues are related to the sum of the squares of the distances
between all pairs of vertices. This relationship is detailed in the following lemma.

Lemma 5.2. [6, Eqn (2)] Let G be a connected graph with n ≥ 2 vertices and
let λi (1 ≤ i ≤ n) be the eigenvalues of the distance matrix D of G. Then

n∑
i=1

λ2
i = 2S(G)

Proof. Since D is real and symmetric, D is diagonalizable by the spectral the-
orem. So D = PDP−1 where D is the diagonal matrix of eigenvalues of D
and

D2 = PD2P−1.

Now we compute as follows:
n∑

i=1

λ2
i = Tr(D2) = Tr(D2P−1P) = Tr(PD2P−1) = Tr(D2).

Since D is symmetric, D2 = DDT . Thus D2
ii =

∑n
j=1 dist(i, j)

2. Since tr(D2)
counts the sum of the squares of the distances of ordered pairs, it double-counts
the unordered pairs. So, Tr(D2) = 2S(G).

From the above results, the largest eigenvalue of a distance matrix is positive
because we know that the sum of the squares must be non-zero (S(G) > 0) and
the sum of the eigenvalues is zero. The next lemma provides a lower bound
on the largest eigenvalue for all connected graphs in terms of the sum of the
distances between all unordered pairs of vertices, W (G).
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Lemma 5.3. [6, Cor.7] Let Λ be the largest eigenvalue of the distance matrix
D. Then

Λ ≥ 2

n
W (G)

with equality if and only if the row sums of D are all equal.

Proof. By the Rayleigh quotient for D,

Λ = max{~x
T D~x

~xT~x
| ~x 6= ~0}.

So it follows that

Λ ≥ 1T D1

1T 1
=

1T [D1D2...Dn]
T

n
=

∑n
i=1 Di

n
=

2

n
W (G).

Now suppose Λ = 2
nW (G). Then

Λ =
1T D1

1T 1
.

Moreover, Λ = ~xT D~x
~xT ~x

if and only if ~x is an eigenvector for Λ. Therefore, 1 is an
eigenvector for Λ, and

Λ1 = D1 =


D1

D2

...
Dn


so therefore D1 = D2 = ... = Dn.

Conversely, suppose D1 = D2 = ... = Dn. Then DM = Di for all i. So,

D1 =


D1

D2

...
Dn

 =


DM

DM

...
DM

 = DM1

Therefore, DM is an eigenvalue. By Lemma 4.1, this implies DM = Λ, and

2

n
W (G) =

2

n

∑
i<j

Dij =
2

n

[
1

2

n∑
i=1

Di

]
=

1

n
[nDM ] = DM = Λ,

as desired.

For the ethane and C20 graphs, the above bound gives us that Λ(E) > 14.5
and Λ(C) ≥ 50. We realize equality in graph C because the row sums are equal.
For graph E, we now know that 14.5 < Λ < 16.

The next result is another way to find a lower bound. As seen in our exam-
ples, the bound is less than optimal for many graphs. For example, it says that

10



Λ(E) > 12.25 and Λ(C) > 34.84. However, its usefulness will be seen when we
seek bounds on the sum of the eigenvalues for a graph and its complement in a
Nordhaus-Gaddum type result (Theorem 7.2).

Lemma 5.4. [6, Cor.8] Let G be a connected graph with n ≥ 2 vertices and m
edges. Then

Λ ≥ 2(n− 1)− 2m

n

with equality if and only if G = Kn or G is a regular graph of diameter two.

Proof. By Lemma 3.2,
W (G) ≥ n(n− 1)−m

with equality if and only if the diameter of G is at most two. By Lemma 5.3,

Λ ≥ 2

n
W (G) ≥ 2(n− 1)− 2m

n
.

Suppose equality holds throughout. Then G = Kn or G is of diameter
two and by Lemma 5.3 the row sums of D are equal. This implies that D =
2J−A−2I. So, for all i, DM = Di = k ·1+j ·2 where k is the number of vertices
adjacent to vertex i and j is the number of vertices at distance two from vertex
i. Since all of the row sums are the same, and since 1 + j + k = n, it follows
that k and j must be constant for each vertex. Therefore, G is k-regular. So,
either G = Kn or G is regular with diameter 2.

Conversely, suppose G = Kn or G is a regular graph of diameter two. Then
the row sums of the distance matrix are equal. So by Lemma 5.3 and Lemma
3.2,

Λ =
2

n
W (G) =

2

n
[n(n− 1)−m] = 2(n− 1)− 2m

n
,

as desired.

6 Distance Matrices of Graphs in G
Given the abundance of chemical molecules whose graphs belong to the G class,
including ethane and C20, looking at this special class leads to further refinement
of the bounds on the largest eigenvalue. The next lemma does not provide a
bound but will be needed for the proof of Theorem 6.2.

Lemma 6.1. [2] Let A be a non-negative, irreducible, symmetric matrix with
exactly two distinct eigenvalues. Then A = uuT + rI for some positive column
vector u and some r ∈ R.
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Theorem 6.2. [6, Eqn(4)] Let G ∈ G with n ≥ 2 vertices. Then

Λ ≤
√

2(n− 1)

n
S(G),

with equality if and only if G = Kn.

Proof. By Lemma 5.1, Λ = −
∑n

i=2 λi, so Λ2 =
[∑n

i=2 λi

]2
. By the Cauchy-

Schwartz inequality, [ n∑
i=2

λi

]2
≤ (n− 1)

n∑
i=2

λ2
i .

But by Lemma 5.2,
n∑

i=2

λ2
i = 2S(G)− Λ2.

Therefore,
Λ2 ≤ (n− 1)[2S(G)− Λ2],

with equality if and only if λ2 = ... = λn. Adding (n − 1)Λ2 to both sides, we
obtain

nΛ2 ≤ 2(n− 1)S(G),

which yields the desired result:

Λ ≤
√

2(n− 1)

n
S(G).

Claim: Λ =
√

2(n−1)
n S(G) if and only if G = Kn

Suppose Λ =
√

2(n−1)
n S(G). Then λ2 = ... = λn. This implies D has two

distinct eigenvalues. By Lemma 6.1, D = ~u~uT + rI for some positive column
vector ~u. Since Dii = 0 for all i and [~u~uT ]ii = u2

i , we have 0 = Dii = u2
i +r. So,

ui =
√
−r, and ~u =

√
−r1. Then, for all i 6= j, Dij = uiuj + rIij = uiuj = −r.

Since G is a connected graph, then for all i 6= j, Dij > 0 which implies that
r < 0. This implies r = −1 (because each vertex must have a neighbor in a
connected graph and dist(v, u) = 1 for u ∈ N(v).) Therefore, for all i 6= j,
Dij = 1, thus G = Kn.

Conversely, suppose G = Kn. Then D = J − I and D1 = ... = Dn. So by
Lemma 4.1, Λ = D1 = ... = Dn. Also, S(G) =

(
n
2

)
= n(n−1)

2 . So,√
2(n− 1)

n
S(G) =

√
2(n− 1)

n

n(n− 1)

2
= n− 1 = Di = Λ,

as desired.

Returning to ethane and C20, Theorem 6.2 posits Λ(E) < 15.427 and Λ(C) <
54.093. Even though this is not an improvement for C, it does provide us with
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an improvement on the bounds of the largest eigenvalue of the distance matrix
for E. So, the search has narrowed to 14.5 < Λ < 15.427. In fact, by calculation,

Λ(E) ≈ 14.937.

Corollary 6.2.1. [6] Let G ∈ G with n ≥ 3 vertices. Then

Λ <

√
(n+ 1)n(n− 1)2

6
.

Proof. By Theorem 6.2,

Λ ≤
√

2(n− 1)

n
S(G),

with equality if and only if G = Kn. By Lemma 3.3,

S(G) ≤ (n+ 1)n2(n− 1)

12

with equality if and only if G = Pn. For n ≥ 3, we have Pn 6= Kn, therefore

Λ <

√
2(n− 1)

n

(n+ 1)n2(n− 1)

12
=

√
(n+ 1)n(n− 1)2

6
,

as desired.

Unfortunately the corollary above does not provide a better bound on the
largest eigenvalue for either example – ethane or C20. Indeed, Corollary 6.2.1
only tells us that Λ(E) < 24.248 and Λ(C) < 158.965. The large discrepancy in
the bound for graph C highlights that this upper bound on the largest eigenvalue
was a result on S(G) attaining a maximum value when the graph is a path.

7 Nordhaus-Gaddum Type Result
The final two theorems give us Nordhaus-Gaddum type results for the bounds
on the largest eigenvalue of the distance matrix of a graph G and its comple-
ment, G. The second theorem refines the first in the case that G or G is in the
graph class G.

In order to have eigenvalues for the distance matrix, a graph must be con-
nected. So for a Nordhaus-Gaddum result, G and G must be connected. So as
we will see in our next lemma, there needs to be at least 4 vertices in G.

Lemma 7.1. Suppose that G and G are connected and nonempty graphs. Then
G has n ≥ 4 vertices.
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Proof. Since G and G are connected, |E(G)| ≥ n− 1 and |E(G)| ≥ n− 1. But
|E(G)|+ |E(G)| =

(
n
2

)
, so

2(n− 1) ≤ n(n− 1)

2
,

which implies n ≥ 4.

Theorem 7.2. [6, Eqn (11)] Let G be a connected graph on n ≥ 4 vertices with
a connected complement G. Then

3(n− 1) ≤ Λ(G) + Λ(G) <
n(n+ 3)

2
− 3,

with left equality if and only if G and G are both regular graphs of diameter two.

Proof. Let mG and mG be the number of edges of G and G. Then we have
mG +mG =

(
n
2

)
, so, 2(mG +mG) = n(n− 1). By Lemma 5.4,

Λ(G) + Λ(G) ≥
[
2(n− 1)− 2mG

n

]
+

[
2(n− 1)−

2mG

n

]
= 4(n− 1)−

2(mG +mG)

n

= 4(n− 1)− n(n− 1)

n
= 3(n− 1),

and equality holds if and only if G and G are regular graphs of diameter two.
Let f(n) = n(n+3)

2 − 3. Let DM be the maximum row sum of the distance
matrix for G. By Lemma 4.1, we have Λ ≤ DM with equality if and only if the
row sums are equal. By Corollary 4.3.1, if the row sums of D are equal, then G
is not a path and thus Λ < n(n−1)

2 .
Consider the possible diameters for G and G. Note that diam(G) 6= 1 since

G is connected.
Suppose G has diameter two. First we claim that Λ < 2n − 3. To see why,

note that G cannot be a path. This is because if G is a path of diameter two, then
n = 3, which is impossible. Now, by Lemma 4.3, DM < 1 + 2(n− 2) = 2n− 3,
and so

Λ < 2n− 3. (1)

Now, by Lemma 3.1, since G has diameter 2, it must be the case that G > 3.
This implies

Λ(G) + Λ(G) <
n(n− 1)

2
+ 2n− 3 =

n(n− 1) + 2(2n)

2
− 3 = f(n).
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Suppose G has diameter three. Then by Lemma 3.1 G has diameter three.
Case n = 4, then G = G = P4. So Λ(G) = Λ(G) < n(n−1)

2 = 6. Then,
Λ(G) + Λ(G) < 12 � f(4) = 11. However, Λ(G) = Λ(G) =

√
10 + 2, so

Λ(G) + Λ(G) = 4 + 2
√
10 < 11 = f(4).

Case n ≥ 5 and either G or G has a maximum row sum in the distance
matrix of 1+2+3(n−3). Then by Lemma 4.2, the other graph has a maximum
row sum of 1 + 2(n− 3) + 3. Therefore,

Λ(G) + Λ(G) < [1 + 2 + 3(n− 3)] + [1 + 2(n− 3) + 3] = 5n− 8

Case n ≥ 5 and neither G or G has a maximum row sum in the distance
matrix of 1 + 2 + 3(n− 3). Then,

Λ(G) + Λ(G) < 2[1 + 2 + 3(n− 3)− 1] = 6n− 14. (2)

For n = 5, 6n− 14 < 5n− 8 = 17. So, Λ(G) + Λ(G) < 17 = f(5).
For n ≥ 6, 6n−14 ≥ 5n−8 and thus Λ(G)+Λ(G) < 6n−14. Also, 6n−17 < f(n)
for all n. Therefore, Λ(G) + Λ(G) < f(n) as desired.

Coming back to the distance matrix for graph E, this result suggests

21 < Λ(E) + Λ(E) < 41.

Together with Corollary 6.2.1, we can deduce that 5.573 < Λ(E) < 26.5. But
since the maximum row sum of the distance matrix for graph E = 12 and using
Lemma 4.1, Λ(E) < 12. Graph E ∈ G, so the next result will give improved
bounds on the sum of the largest eigenvalues.

Applying Theorem 7.2 to graph C yields

57 < Λ(C) + Λ(C) < 227.

Theorem 7.3. [6, Eqn (12)] Let G be a connected graph on n ≥ 4 vertices with
a connected complement G. If G ∈ G or G ∈ G, then

Λ(G) + Λ(G) <

√
(n+ 1)n(n− 1)2

6
+ 2n− 3.

Proof. Suppose G ∈ G or G ∈ G. Suppose WLOG, G ∈ G then from Corollary
6.2.1, Λ(G) <

√
(n+1)n(n−1)2

6 .
Consider the possible diameters for G and G.

Suppose G has diameter two (or both G and G have diameter two) . Then
by Theorem 7.2,

Λ(G) + Λ(G) <

√
(n+ 1)n(n− 1)2

6
+ 2n− 3.
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Else suppose G ∈ G, G /∈ G and G has diameter 2. The case that was not made
clear in the Zhou paper [6] is whether G ∈ G and G has diameter 2 determines
that either G must also have a diameter 2 or that G must be an element of G.
So this case has not been proven to meet the improved bound.

Else suppose both G and G have diameter three. Then by (2) in the proof
of Theorem 7.2, Λ(G) + Λ(G) < 6n − 14. For n = 4 and n ≥ 6, 6n − 14 <√

(n+1)n(n−1)2

6 + 2n− 3.

Suppose n = 5: If both G and G have diameter three with n = 5, then G
and G both have at least 4 edges (n-1) and |E(G)| + |E(G)| =

(
5
2

)
= 10. But

suppose G has 4 edges, then G = P5, but diam(P5) = 4 which is impossible.
This implies |E(G)| = |E(G)| = 5.

There are three pairs graphs G and G on 5 vertices of diameter 3 up to
isomorphism.

Pair 1 (G1 and G1): Λ(G1) + Λ(G1) ≈ 13.6754

Pair 2 (G2 and G2): Λ(G2) + Λ(G2) ≈ 13.2750

Pair 3 (G3 and G3): Λ(G3) + Λ(G3) ≈ 13.5467

And thus for n = 5, Λ(G) + Λ(G) <
√

(n+1)n(n−1)2

6 + 2n− 3 ≈ 15.94427.
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Additionally, in all of the above 5-vertex graphs with diameter 3, both Gi

and Gi have only one positive eigenvalue so they all belong to G.
This theorem applies to both graph E and C since they belong to the graph

class G. This new result to graph E gives Λ(E) + Λ(E) < 34.39. This new
upper bound narrows further what the largest eigenvalue of graph E to be at
most 19.885. However, the previous lemmas could be applied for better bounds
on the largest eigenvalue of E. We know from Lemma 4.1, ΛE < 12 and from
Lemma 6.2 Λ(E) < 15.427. So Λ(E) + Λ(E) < 27.427.

For graph C, Theorem 7.3 gives Λ(C) + Λ(C) < 195.97. However, Lemma
3.1 that diam(C) ≤ 3. Therefore by Lemma 4.2, the maximum row sum is
1+2+3(17) = 54. Therefore, from Lemma 4.1, that Λ(C) = 50 and Λ(C) ≤ 54
and therefore the sum of the eigenvalues is at most 104. This is significantly
less than what Theorem 7.3 gives.

8 Conclusion
While the Nordhaus-Gaddum type theorem can be appreciated, it seems like
there can be improvements to this result. It also has yet to be proven that
Theorem 7.3 applies to the case when G has diameter two, G ∈ G, but G /∈ G.
What is known is that G cannot belong to any of the families of graphs like a
Johnson, Hamming, Doob, Cocktail party, cyclic graphs and many more. Also,
the diameter of G is not bounded.

Using Zhou’s results [6], this paper has outlined upper and lower bounds on
the largest eigenvalue of a distance matrix based upon the Wiener index, S(G),
as well as the largest row sum. A few of the results are also applicable to other
symmetric, non-negative matrices.
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9 Appendix

DC =



0 1 2 2 1 2 3 3 4 5 4 4 3 3 2 1 2 2 3 3
1 0 1 2 2 3 4 3 5 4 3 3 2 2 1 2 2 3 4 3
2 1 0 1 2 3 3 2 4 3 2 3 1 2 2 3 3 4 5 4
2 2 1 0 1 2 2 1 3 3 2 4 2 3 3 3 4 3 4 5
1 2 2 1 0 1 2 2 3 4 3 5 3 4 3 2 3 2 3 4
2 3 3 2 1 0 1 2 2 3 3 4 4 5 4 2 3 1 2 3
3 4 3 2 2 1 0 1 1 2 2 3 3 4 5 3 4 2 2 3
3 3 2 1 2 2 1 0 2 2 1 3 2 3 4 4 5 3 3 4
4 5 4 3 3 2 1 2 0 1 2 2 3 3 4 3 3 2 1 2
5 4 3 3 4 3 2 2 1 0 1 1 2 2 3 4 3 3 2 2
4 3 2 2 3 3 2 1 2 1 0 2 1 2 3 5 4 4 3 3
4 3 3 4 5 4 3 3 2 1 2 0 2 1 2 3 2 3 2 1
3 2 1 2 3 4 3 2 4 2 1 2 0 1 2 4 3 5 4 3
3 2 2 3 4 5 4 3 3 2 2 1 1 0 1 3 2 4 3 2
2 1 2 3 3 4 5 4 4 3 3 2 2 1 0 2 1 3 3 2
1 2 3 3 2 2 3 4 3 4 5 3 4 3 2 0 1 1 2 2
2 2 3 4 3 3 4 5 3 3 4 2 3 2 1 1 0 2 2 1
2 3 4 3 2 1 2 3 2 3 2 3 5 4 3 1 2 0 1 2
3 4 5 4 3 2 2 3 1 2 3 2 4 3 3 2 2 1 0 1
3 3 4 5 4 3 3 4 2 2 3 1 3 2 2 2 1 2 1 0
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